

UNIT –I INTRODUCTION SOFTWARE METRICS

			-	
1	a	Define software crisis? Identify the reasons for software crisis.	[L1][CO1]	[5M]
	b	Explain Waterfall model with a neat diagram and list out the merits and	[L2][CO1]	[5M]
		demerits of waterfall model.		
2	a	Explain evolutionary process models in software engineering.	[L2][CO1]	[5M]
	b	Discuss the prototyping model. What is the effect of designing a	[L5][CO1]	[5M]
		prototype on the overall cost of the software project?		
3	a	What do you understand by term software development life cycle? Why	[L1][CO1]	[5M]
		it is important to while developing a software product?		
	b	Describe the rapid application development (RAD) model. Discuss each	[L5][CO1]	[5M]
		phase in detail.		
4	a	List the process maturity levels in SEI's CMM. Explain each level.	[L2][CO1]	[5M]
	b	Analyze Functional Point Analysis (FPA) with an example.	[L2][CO1]	[5M]
5	a	Explain the spiral model of software development. What are the	[L2][CO1]	[5M]
		limitations of such model?		
	b	Explain the Halstead theory of software science. Is it significant in	[L5][CO1]	[5M]
		today's scenario of software development?		
6	a	Explain in detail the following software metrics with example.	[L2][CO1]	[6M]
		i) Size metric.		
		ii) Token Count.		
	b	Write a program in C language. List out the operators and	[L5][CO1]	[4M]
		operands and also calculate the values of software science measures		
		like η , N, V, E, and λ ?		
7	E	xplain in detail the following software metrics with example.	[L2][CO1]	[10M]
		i) Design Metrics		
		ii) Data structure Metrics		
8	a	An application has the following: 10 external inputs, 12 high external	[L6][CO1]	[6M]
		outputs, 20 low internal logical files, 15 high external interface files, 12		
		average external enquiries. And a value of complexity adjustment factor		
		of 1.10. What are the unadjusted and adjusted function pint counts?		
	b	Is software metrics required in software engineering? Why do we really	[L1][CO1]	[4M]
		need metrics in software.		
9	E	xplain in detail the following software metrics with example.	[L2][CO1]	[10M]
		i. Function count		
		ii. Information flow metrics		

Course Code: 20CI0605

10	Consider a project with the following functional units:	[L6][CO1]	[10M]
	Number of user inputs $= 50$		
	Number of user outputs $= 40$		
	Number of user enquiries $= 35$		
	Number of user files $= 06$		
	Number of external interfaces $= 04$		
	Assume all complexity adjustment factors and weighting factors are		
	average. Compute the function points for the project.		

UNIT –II

SOFTWARE PROJECT PLANNING, SOFTWARE REQUIREMENT ANALYSIS AND SPECIFICATIONS

1	a	Explain the cost estimation models.	[L1][CO2]	[5M]
	b	A database system is developed. The effort has been estimated to be 100		[5M]
		persons- months. Calculate the number of lines of code and productivity	[L6][CO2]	
		in LOC/ persons- month.		
2	a	Compare the Walton-Felix model with the SEL model on a software	[L6][CO2]	[5M]
		development expected to involve 12 person-years of effort Software		
		Project Planning.		
		(i) Calculate the number of lines of source code that can be produced.		
		(ii) Calculate the duration of the development.		
		(iii) Calculate the productivity in LOC/PY		
	1	(iv) Calculate the average manning		
	b	Identify typical software risk factors. Explain the risk management	[L2][CO2]	[5M]
2		activities.		[c]\/]
3	a h	What is COCOMO Model? Explain Basic COCOMO model in detail.	[L2][CO2]	[5M]
	b	Suppose that a project was estimated to be 400 KLOC. Calculate the effort,	[L6][CO2]	[5M]
		development time for each of the three modes (i.e., organic, semidetached and embedded and analyze.		
4	a	Explain Intermediate COCOMO model in detail.	[L2][CO2]	[5M]
	b	A new project with estimated 400 KLOC embedded system has to be	[L5][CO2]	[5M]
	U	developed. Project manager has a choice of hiring from two pools of		
		developed: respect manager has a choice of mining from two pools of developers: very highly capable with very little experience in the		
		programming language being used or developers of low quality but a lot of		
		experience with the programming language. What is the impact of hiring all		
		developers from one or the other pool?		
5	a	Compare various types of projects modes in the COCOMO Model.	[L6][CO2]	[5M]
	b	A project size of 200 KLOC is to be developed. Software development	[L5][CO2]	[5M]
		team has average experience on similar type of projects. The project schedule		
		is not very tight. Calculate the effort, development time, average		
		staff size and productivity of the project.		
6	a	Interpret the Putnam resource allocation model.	[L2][CO2]	[5M]
	b	A software development project is planned to cost 95 MY in a period of 1	[L6][CO2]	[5M]
		year and 9 months. Calculate the peak manning and average rate of		
		software team build up.		
7	a	Differentiate functional and non-functional requirements.	[L2][CO2]	[5M]
	b	Define problem analysis. Explain what are the five steps for problems analysis?	[L5][CO2]	[5M]
8	a	A university registrar's office maintains data about the following entities:	[L2][CO2]	[5M]
		i. Courses, including <u>number</u> , title, credits, syllabus, and prerequisites;		
		ii. Course offerings, including course number, year, semester, section		
		number,		

Course Code: 20CI0605

R20

instructor(s), timings, and classroom; iii. Students, including <u>student-id</u> , name, and program; iv. Instructors, including <u>identification number</u> , name, department, and title. Further, the enrolment of students in courses and grades awarded to students in each course they are enrolled for must be appropriately modelled. Construct an E-R diagram for the registrar's office. Document all assumptions that you make about the menning constraints		
iv. Instructors, including <u>identification number</u> , name, department, and title. Further, the enrolment of students in courses and grades awarded to students in each course they are enrolled for must be appropriately modelled. Construct an E-R diagram for the registrar's office. Document all assumptions that you make		
Further, the enrolment of students in courses and grades awarded to students in each course they are enrolled for must be appropriately modelled. Construct an E-R diagram for the registrar's office. Document all assumptions that you make		
each course they are enrolled for must be appropriately modelled. Construct an E-R diagram for the registrar's office. Document all assumptions that you make		
E-R diagram for the registrar's office. Document all assumptions that you make		
about the manning constraints		
about the mapping constraints.		
b Elaborate Data dictionary in software engineering.	L6][CO2]	[5M]
9 a Explain Software Prototyping in software engineering.	L2][CO2]	[5M]
	L6][CO2]	[5M]
explain the functional requirements you are considering.		
10 a List the characteristics of good SRS document and their requirements [L]	L2][CO2]	[5M]
	L6][CO2]	[5M]
identified are:		
i. Screen edits		
ii. Command Language Interpreter		
iii. File Input & Output		
iv. Cursor Movement		
v. Screen movement the size of these are estimated to be 4k, 2k, 1k, 2k and		
3k delivered source code lines. Use COCOMO to determine		
1. Overall cost and schedule estimates (assume values for different cost		
drivers, with at least three of them being different from 1.0)		
Cost & Schedule estimates for different phases.		

R20

UNIT –III

SOFTWARE DESIGN, SOFTWARE RELIABILITY

				1		
1	a	popular and practical?	s of design. Which design strategy is most	[L2][CO3]	[5M]	
	b	Define cohesion and couplin coupling.	[L1][CO3]	[5M]		
2	a	· · ·	n object-oriented designs and function oriented	[L2][CO3]	[5M]	
	b What is modularity? List the important properties of a modular system.				[5M]	
3	a		ware design. How do we transform an informal	[L1][CO3] [L6][CO3]	[5M]	
5		design to a detailed design?	C C			
	b			[L4][CO3]	[5M]	
4	a		explain different types of coupling.	[L1][CO3]	[5M]	
	b	Demonstrate relationship betw process of good software desi	veen module cohesion and module coupling for gn.	[L1][CO3]	[5M]	
5	а	Discuss object-oriented softw		[L6][CO3]	[5M]	
	b	-	s of design. Which design strategy is most	[L2][CO3]	[5M]	
		popular and practical?		[][000]	[01]1]	
6	a	Explain function-oriented soft	tware design approach.	[L1][CO3]	[5M]	
<u> </u>	b		xplain the significance of bath tube curve of	[L1][CO3]	[5M]	
		reliability with the help of a d e following parameters for bas				
7	[L6][CO3]	[10 M]				
		Basic execution time model	Logarithmic poisson execution time model			
		$\lambda_0 = 10$ failures/CPU hr.	λ_0 =30 failures/CPU hr.			
		V ₀ =100 failures	θ=0.025/faluire			
	i. Determine the additional failures and additional execution time					
	required toreach the failure objectives of 5failures/CPU hr for both models.					
	ii. Repeat this for an objective function of 0.5 failure/CPU hr. Assume that westart with the initial failure intensity only.					
8	Δς		rience 200 failures in infinite time. It has now	[L6][CO3]	[10 M]	
			re intensity was 20 failures/CPU hr.		[1014]	
		i. Determine the current fail				
		i. Find the decrement of fail	•			
	ii		erienced and failure intensity after 20 and 100			
		CPU hrs. of execution.				
	iv		and additional execution time required to reach			
		the failure intensity object	-			
	Us		lel for the above-mentioned calculations			
9	Ex	plain the following software re	liability models.	[L2][CO3]	[10M]	
		i) Logarithmic poisson executi	on time model			
		ii) Calendar Time Component	Model.			
10		Discuss the basic model of sof	ftware reliability. How $\Delta \mu$ and $\Delta \tau$ can be	[L6][CO3]	[10 M]	
	а	calculated				
1	b		with coffwore reliability	[I_2][CO2]	[5M]	
	-	Compare hardware reliability	with software renability	[L2][CO3]		

R20

UNIT –IV

SOFTWARE TESTING

1	a	What is software testing? What is the deference between verification and validation	[L1][CO4]	[5M]
	b	Define the following terminologies:	[L1][CO4]	[5M]
		i) Error, Mistake, Bug, Fault and Failure.	[][]	L' J
		ii) Test, Test case and Test suite.		
2	W	hat is the difference between	[L2][CO4]	[10M]
-		i. Alpha testing & beta testing	[[]]	
		ii. Functional & structural testing		
3	Di	scuss various types of functional testing techniques.	[L5][CO4]	[10M]
4	a	Consider a program for the determination of the nature of roots of a	[L6][CO4]	[5M]
-	u	quadratic equation. Its input is a triple of positive integers (say a,b,c) and		
		values may be from interval [0,100]. The program output may have one of		
		the following words.		
		[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]		
		Design the boundary value test cases.		
	b	Explain the boundary value analysis testing techniques with the help of an	[L2][CO4]	[5]]
	U	example.	[L2][C04]	[5M]
5	0			[5] /[]
5	a	Illustrate Equivalence class testing technique.	[L2][CO4]	[5M]
	b	Consider a program for the determination of the nature of roots of a quadratic	[L6][CO4]	[5M]
		equation. Its input is a triple of positive integers (say a,b,c) and values may be		
		from interval [0,100]. The program output may have one of the following		
		words.		
		[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]		
		Identify the equivalence class test cases for output and input domains.		
6	Ela	aborate various types of structural testing technique.	[L5][CO4]	[10M]
7	a	Explain decision table-based testing technique.	[L2][CO4]	[5M]
	b	Simplify data flow testing technique with an example.	[L2][CO4]	[5M]
8	a	What is the purpose of integration testing? How is it done?	[L1][CO4]	[5M]
	b	Differentiate between integration testing and system testing.	[L4][CO4]	[5M]
9	a	What are the objectives of testing? Why is the psychology of a testing person	[L1][CO4]	[5M]
	1	important?		
	b	Summarize an effect graphing testing technique.	[L2][CO4]	[5M]
10	a	Explain mutation testing technique.	[L2][CO4]	[5M]
	b	Compare various debugging technique.	[L2][CO4]	[5M]

R20

UNIT –V

SOFTWARE MAINTENANCE

1	а	Explain the following teams:	[L2][CO5]	[5M]
		i) Reverse engineering		
		ii) Regression testing		
	b	Differentiate between re-engineering and new development.	[L2][CO5]	[5M]
2	Ex	plain the phases of software maintenance with help of a diagram.	[L5][CO5]	[10M]
3	W	nat is software maintenance? Describe various categories of maintenance. Which	[L2][CO5]	[10M]
	cat	egory consumes maximum effort and why?		
4	Di	scuss Reverse engineering and Re-engineering.	[L6][CO5]	[10M]
5	W	nat is regression testing? Differentiate between regression and development	[L2][CO5]	[10M]
	tes	ting.		
6	Lis	st out system documentation and also explain their purpose.	[L1][CO5]	[10M]
7	a	Explain the following software maintenance.	[L2][CO5]	[5M]
		i) Boehm's Model		
		ii) Iterative enhancement model		
	b	What are the appropriate reverse engineering tools? Discuss any two tools in	[L1][CO5]	[5M]
		detail.		
8	a	What is reverse engineering? Discuss levels of reverse engineering.	[L6][CO5]	[5M]
	b	What are configuration management activities? Draw the Performa of change	[L6][CO5]	[5M]
		request form.		
9	Ide	entify various software maintenance models and explain in details.	[L2][CO5]	[10M]
10	a	Classify different categories of software documentation.	[L1][CO5]	[5M]
	b	Compare New software development and Re-engineering	[L4][CO5]	[5M]
·				

Preparedby: B. Raja Kumar, Assist.Professor/CSIT